0 Ju l 2 00 4 CM points on products of Drinfeld modular curves Florian Breuer

نویسنده

  • Florian Breuer
چکیده

Let X be a product of Drinfeld modular curves over a general base ring A of odd characteristic. We classify those subvarieties of X which contain a Zariski-dense subset of CM points. This is an analogue of the André-Oort conjecture. As an application, we construct non-trivial families of higher Heegner points on modular elliptic curves over global function fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The André-Oort conjecture for products of Drinfeld modular curves

Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.

متن کامل

Special subvarieties of Drinfeld modular varieties

We explore an analogue of the André-Oort conjecture for subvarieties of Drinfeld modular varieties. The conjecture states that a subvariety X of a Drinfeld modular variety contains a Zariski-dense set of complex multiplication (CM) points if and only if X is a “special” subvariety (i.e. X is defined by requiring additional endomorphisms). We prove this conjecture in two cases. Firstly when X co...

متن کامل

Torsion bounds for elliptic curves and Drinfeld modules

We derive asymptotically optimal upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K, as a function of the degree [L : K]. Our main tool is the adelic openness of the image of Galois representations attached to elliptic curves and Drinfeld modules, due to Serre and Pink-Rütsche, respectively. Our approach...

متن کامل

Introduction to Drinfeld Modules

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008